Extensions 1→N→G→Q→1 with N=C2×C58 and Q=C22

Direct product G=N×Q with N=C2×C58 and Q=C22
dρLabelID
C23×C58464C2^3xC58464,51

Semidirect products G=N:Q with N=C2×C58 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C58)⋊C22 = D4×D29φ: C22/C1C22 ⊆ Aut C2×C581164+(C2xC58):C2^2464,39
(C2×C58)⋊2C22 = D4×C58φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58):2C2^2464,46
(C2×C58)⋊3C22 = C2×C29⋊D4φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58):3C2^2464,44
(C2×C58)⋊4C22 = C23×D29φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58):4C2^2464,50

Non-split extensions G=N.Q with N=C2×C58 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C58).C22 = D42D29φ: C22/C1C22 ⊆ Aut C2×C582324-(C2xC58).C2^2464,40
(C2×C58).2C22 = C4○D4×C29φ: C22/C2C2 ⊆ Aut C2×C582322(C2xC58).2C2^2464,48
(C2×C58).3C22 = C4×Dic29φ: C22/C2C2 ⊆ Aut C2×C58464(C2xC58).3C2^2464,11
(C2×C58).4C22 = C58.D4φ: C22/C2C2 ⊆ Aut C2×C58464(C2xC58).4C2^2464,12
(C2×C58).5C22 = C4⋊Dic29φ: C22/C2C2 ⊆ Aut C2×C58464(C2xC58).5C2^2464,13
(C2×C58).6C22 = D58⋊C4φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58).6C2^2464,14
(C2×C58).7C22 = C23.D29φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58).7C2^2464,19
(C2×C58).8C22 = C2×Dic58φ: C22/C2C2 ⊆ Aut C2×C58464(C2xC58).8C2^2464,35
(C2×C58).9C22 = C2×C4×D29φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58).9C2^2464,36
(C2×C58).10C22 = C2×D116φ: C22/C2C2 ⊆ Aut C2×C58232(C2xC58).10C2^2464,37
(C2×C58).11C22 = D1165C2φ: C22/C2C2 ⊆ Aut C2×C582322(C2xC58).11C2^2464,38
(C2×C58).12C22 = C22×Dic29φ: C22/C2C2 ⊆ Aut C2×C58464(C2xC58).12C2^2464,43
(C2×C58).13C22 = C22⋊C4×C29central extension (φ=1)232(C2xC58).13C2^2464,21
(C2×C58).14C22 = C4⋊C4×C29central extension (φ=1)464(C2xC58).14C2^2464,22
(C2×C58).15C22 = Q8×C58central extension (φ=1)464(C2xC58).15C2^2464,47

׿
×
𝔽